• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pest resistance to Cry1Ab Bt maize: field resistance, contributing factors and lessons from South Africa

    Thumbnail
    Date
    2013
    Author
    Van den Berg, Johnnie
    Hilbeck, Angelika
    Bøhn, Thomas
    Metadata
    Show full item record
    Abstract
    This paper documents the historical development of resistance of the African maize stem borer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae) to Bt maize (Zea mays L.). This pest was one of the first to evolve resistance to Bt maize expressing Cry1Ab protein. A time-line of events and contributing factors are presented, from the commencement of efficacy testing through to the present situation, where the Cry1Ab toxin has lost its efficacy against B. fusca at many localities throughout the maize producing region, and single-gene Bt maize events often require insecticide treatments for which farmers are compensated. Significant levels of pest survival on Bt maize was observed in the first season after commercial release in 1998 and confirmed seven years later. Reduced selection pressure on the target pest is the objective of insect resistance management (IRM), and strategies to accomplish this should receive highest priority. Where resistance is prevalent, the only viable options to reduce selection pressure are withdrawal of the product and/or enforcement of high-dose/refuge requirements. The latter action may however be of no value under conditions where resistance is prevalent, since the value of refugia to an IRM strategy may be compromised. Remedial actions taken in South Africa included the propagation and enforcement of refuge compliance followed by the release of pyramided maize hybrids in 2011. These pyramids combine Cry1A.105 and Cry2Ab2 toxin-producing transgenes, replacing the ineffective single-transgene. However, it remains uncertain if cross-resistance occurs between Cry1A.105/Cry2Ab2 and the closely related Cry1Ab toxin, and for how long this pyramided event will endure. Cultivation of Cry1Ab-expressing hybrids continues in areas where resistance levels have been confirmed to be high. In retrospect, this case provides lessons regarding IRM, not only in South Africa, but wherever Bt crops are being introduced.
    URI
    http://hdl.handle.net/10394/13796
    Collections
    • Faculty of Natural and Agricultural Sciences [4781]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV