Show simple item record

dc.contributor.authorHawkins, Douglas M.
dc.contributor.authorLombard, F.
dc.date.accessioned2016-09-02T09:32:24Z
dc.date.available2016-09-02T09:32:24Z
dc.date.issued2015
dc.identifier.citationHawkins, D.M. & Lombard, F. 2015. Segmentation of circular data. Journal of applied statistics, 42(1):88-97. [http://dx.doi.org/10.1080/02664763.2014.934665]en_US
dc.identifier.issn0266-4763
dc.identifier.issn1360-0532 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/18518
dc.identifier.urihttp://dx.doi.org/10.1080/02664763.2014.934665
dc.identifier.urihttp://www.tandfonline.com/doi/full/10.1080/02664763.2014.934665
dc.description.abstractCircular data – data whose values lie in the interval [0,2π) – are important in a number of application areas. In some, there is a suspicion that a sequence of circular readings may contain two or more segments following different models. An analysis may then seek to decide whether there are multiple segments, and if so, to estimate the changepoints separating them. This paper presents an optimal method for segmenting sequences of data following the von Mises distribution. It is shown by example that the method is also successful in data following a distribution with much heavier tailsen_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.subjectVon Mises distributionen_US
dc.subjectchangepointsen_US
dc.subjectmodel selectionen_US
dc.titleSegmentation of circular dataen_US
dc.typeArticleen_US
dc.contributor.researchID12950149 - Lombard, Frederick


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record