Genetic algorithm based PID tuning for optimal power control of a three-shaft Brayton cycle based power conversion unit
Abstract
This paper considers the development of a PID control strategy to optimally control the power output of a High Temperature Gas-cooled Reactor (HTGR) power plant. A specific type of HTGR called the Pebble Bed Modular Reactor (PBMR) that utilises a closed recuperative Brayton cycle with helium as working fluid is considered. The power control of this kind of plant is significantly different from conventional steam cycle nuclear power plants. A distinguishing feature that complicates the control is the use of three separate shafts for different compressor/turbine or turbine/generator pairs. In addition the power output cannot be directly controlled by means of an upstream valve that regulates the flow through the power turbine, as is the case with conventional steam cycles. This paper addresses these challenges by means of a control strategy consisting of four PID control loops. The controller gains are optimised by means of a Genetic Algorithm (GA) that uses real-valued genes and the ITAE performance measure as a cost function. The control strategy is implemented and evaluated on a linear Simulink® model of the PBMR Power Conversion Unit (PCU). Results are presented illustrating the performance of the GA optimised PID control strategy
URI
http://hdl.handle.net/10394/19961https://www.sciencedirect.com/science/article/pii/S1474667016311065
https://doi.org/10.3182/20120328-3-IT-3014.00116