Show simple item record

dc.contributor.authorMajewski, W. Adam
dc.contributor.authorLabuschagne, Louis E.
dc.date.accessioned2017-04-18T11:25:33Z
dc.date.available2017-04-18T11:25:33Z
dc.date.issued2016
dc.identifier.citationMajewski, W.A. & Labuschagne, L.E. 2016. Why are Orlicz spaces useful for statistical physics? (In Alpay, D., Cipriani, F., Colombo, F., Guido, D., Sabadini, I. & Sauvageot, J.-L., eds. Noncommutative analysis, operator theory and applications). Operator theory: advances and applications, 252:271-283. [https://doi.org/10.1007/978-3-319-29116-1_13]en_US
dc.identifier.isbn978-3-319-29114-7
dc.identifier.isbn978-3-319-29116-1 (Online)
dc.identifier.issn0255-0156
dc.identifier.urihttp://hdl.handle.net/10394/21440
dc.identifier.urihttps://doi.org/10.1007/978-3-319-29116-1_13
dc.identifier.urihttps://link.springer.com/chapter/10.1007%2F978-3-319-29116-1_13
dc.description.abstractWe review a new formalism based on Orlicz spaces for the description of large regular statistical systems. Our presentation includes both classical and quantum systems. This approach has the advantage that statistical mechanics is much better settleden_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectOrlicz spacesen_US
dc.subjectNoncommutative integrationen_US
dc.subjectStatistical physicsen_US
dc.subjectBoltzmann theoryen_US
dc.subjectEntropyen_US
dc.titleWhy are Orlicz spaces useful for statistical physics?en_US
dc.typeBook chapteren_US
dc.contributor.researchID22982477 - Labuschagne, Louis Ernst


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record