Show simple item record

dc.contributor.authorMalatji, Bontle G.
dc.contributor.authorMason, Shayne
dc.contributor.authorVan Reenen, Mari
dc.contributor.authorReinecke, Carolus J.
dc.contributor.authorMeyer, Helgard
dc.date.accessioned2017-06-05T13:23:38Z
dc.date.available2017-06-05T13:23:38Z
dc.date.issued2017
dc.identifier.citationMalatji, B.G. et al. 2017. A diagnostic biomarker profile for fibromyalgia syndrome based on an NMR metabolomics study of selected patients and controls. BMC neurology, 17(1): Article no 88. [https://doi.org/10.1186/s12883-017-0863-9]en_US
dc.identifier.issn1471-2377 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/24829
dc.identifier.urihttps://doi.org/10.1186/s12883-017-0863-9
dc.identifier.urihttps://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0863-9
dc.description.abstractBackground: Fibromyalgia syndrome (FMS) is a chronic pain syndrome. A plausible pathogenesis of the disease is uncertain and the pursuit of measurable biomarkers for objective identification of affected individuals is a continuing endeavour in FMS research. Our objective was to perform an explorative metabolomics study (1) to elucidate the global urinary metabolite profile of patients suffering from FMS, and (2) to explore the potential of this metabolite information to augment existing medical practice in diagnosing the disease. Methods: We selected patients with a medical history of persistent FMS ( n = 18), who described their recent state of the disease through the Fibromyalgia Impact Questionnaire (FIQR) and an in-house clinical questionnaire (IHCQ). Three control groups were used: first-generation family members of the patients ( n = 11), age-related individuals without any indications of FMS or related conditions ( n = 10), and healthy young (18 – 22 years) individuals ( n =20).All subjects were female and the biofluid under investigation was urine. Correlation analysis of the FIQR showed the FMS patients represented a well-defined disease gro up for this metabolomics study. Spectral analyses of urine were conducted using a 500 MHz 1 H nuclear magnetic resonance (NMR) spectrometer; data processing and analyses were performed using Matlab, R, SPSS and SAS software. Results and discussion: Unsupervised and supervised multivariate analyses distinguished all three control groups and the FMS patients, and significant increases in metabolites related to the gut microbiome (hippuric, succinic and lactic acids) were observed. We have developed an algorithm f or the diagnosis of FMS consisting of three metabolites — succinic acid, taurine and creatine — that have a good level of diagnostic accurac y (Receiver Operating Characteristic (ROC) analysis — area under the curve 90%) and on the pain and fatigue symptoms for the selected FMS patient group. Conclusion: Our data and comparative analyses indicated an altere d metabolic profile of patients with FMS, analytically detectable within their urine. Validation studies may substantiate urinary metabolites to supplement information from medical assessment, tender-point measurements and FIQR questionnaires for an improved objective diagnosis of FMSen_US
dc.language.isoenen_US
dc.publisherBioMed Centralen_US
dc.subjectFibromyalgia syndromeen_US
dc.subjectProton nuclear magnetic resonance ( 1H–NMR) spectroscopyen_US
dc.subjectMetabolomicsen_US
dc.subjectMetabolite markersen_US
dc.subjectPainen_US
dc.titleA diagnostic biomarker profile for fibromyalgia syndrome based on an NMR metabolomics study of selected patients and controlsen_US
dc.typeArticleen_US
dc.contributor.researchID21487855 - Mason, Shayne William
dc.contributor.researchID12791733 - Van Reenen, Mari
dc.contributor.researchID10055037 - Reinecke, Carolus Johannes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record