Electrical resistivity of carbonaceous bed material at high temperature
Date
2020Author
Surup, Gerrit Ralf
Chaldien, Annah
Beukes, Johan Paul
Pedersen, Tommy Andre
Tangstad, Merete
Metadata
Show full item recordAbstract
This study reports the effect of high-temperature treatment on the electrical properties of charcoal, coal, and coke. The electrical resistivity of industrial charcoal samples used as a reducing agent in electric arc furnaces was investigated as a renewable carbon source. A set-up to measure the electrical resistivity of bulk material at heat treatment temperatures up to 1700 ∘C was developed. Results were also evaluated at room temperature by a four-point probe set-up with adjustable load. It is shown that the electrical resistivity of charcoal decreases with increasing heat treatment temperature and approaches the resistivity of fossil carbon materials at temperatures greater than 1400 ∘C. The heat treatment temperature of carbon material is the main influencing parameter, whereas the measurement temperature and residence time showed only a minor effect on electrical resistivity. Bulk density of the carbon material and load on the burden have a large impact on the electrical resistivity of each material, while the effect of particle size can be neglected at high heat treatment temperature or compacting pressure. The mechanical durability of charcoal slightly increased after heat treatment and decreased for coal and semi-coke samples. The results indicate that charcoal can be used as an efficient carbon source for electric arc furnaces
URI
http://hdl.handle.net/10394/35645https://doi.org/10.3390/pr8080933
https://www.mdpi.com/2227-9717/8/8/933