• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dissolution of titanium dioxide nanoparticles in synthetic biological and environmental media to predict their biodurability and persistence

    Thumbnail
    View/Open
    Gulumian_M_Dissolution of.pdf (3.234Mb)
    Date
    2022
    Author
    Mbanga, Odwa
    Cukrowska, Ewa
    Gulumian, Mary
    Metadata
    Show full item record
    Abstract
    Investigating the biodurability and persistence of titanium dioxide nanoparticles (TiO2 NPs) is of paramount importance because these parameters influence the particles' impact on human health and the environment. Contrary to most research conducted so far, the present study elucidates the dissolution kinetics, namely the dissolution rates, rate constants, order of reaction and half-times of TiO2 NPs in five different simulated bio- logical fluids and two synthetic environmental media to predict their behaviour in real life situations. Results have shown that the dissolution of TiO2 NPs in all simulated fluids was limited. Of all the simulated biological media tested, acidic media such as phagolysosomal and gastric fluid produced the highest dissolution of TiO2 NPs compared to alkaline media such as blood plasma, Gamble's fluid, and intestinal fluid. Furthermore, when the particles were exposed to simulated environmental conditions, the dissolution was higher in high ionic strength seawater compared to freshwater. The dissolution kinetics of titanium dioxide nanoparticles followed first order reaction kinetics and were generally characterized by low dissolution rates and long half-times. These findings indicate that TiO2 NPs are very insoluble and will remain unchanged in the body and environment over long periods of time. Therefore, these particles are most likely to cause both short and long-term health effects and will remain persistent following release into the environment.
    URI
    http://hdl.handle.net/10394/41728
    https://doi.org/10.1016/j.tiv.2022.105457
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV