Inhibition of monoamine oxidase by selected C5- and C6-substituted isatin analogues
Date
2011Author
Manley-King, Clarina I.
Bergh, Jacobus J.
Petzer, Jacobus P.
Metadata
Show full item recordAbstract
Previous studies have shown that (E)-5-styrylisatin and (E)-6-styrylisatin are reversible inhibitors of human monoamine oxidase (MAO) A and B. Both homologues are reported to exhibit selective binding to the MAO-B isoform with (E)-5-styrylisatin being the most potent inhibitor. To further investigate these structure–activity relationships (SAR), in the present study, additional C5- and C6-substituted isatin analogues were synthesized and evaluated as inhibitors of recombinant human MAO-A and MAO-B. With the exception of 5-phenylisatin, all of the analogues examined were selective MAO-B inhibitors. The C5-substituted isatins exhibited higher binding affinities to MAO-B than the corresponding C6-substituted homologues. The most potent MAO-B inhibitor, 5-(4-phenylbutyl)isatin, exhibited an IC50 value of 0.66 nM, approximately 13-fold more potent than (E)-5-styrylisatin and 18,500-fold more potent than isatin. The most potent MAO-A inhibitor was found to be 5-phenylisatin with an IC50 value of 562 nM. The results document that substitution at C5 with a variety of substituents is a general strategy for enhancing the MAO-B inhibition potency of isatin. Possible binding orientations of selected isatin analogues within the active site cavities of MAO-A and MAO-B are proposed.
URI
http://hdl.handle.net/10394/7382https://www.sciencedirect.com/science/article/pii/S0968089610010412
https://doi.org/10.1016/j.bmc.2010.11.028
Collections
- Faculty of Health Sciences [2404]